This test uses JavaScript to generate your test and mark it. You therefore need to enable Scripting using the Preferences... item in one of the Menu items for this Browser's window. Once enabled, just Reload (Refresh) this page.

Series: Arithmetic Progression Formula Manipulation

If the sum of the first 8 terms of an arithmetic series starting from
– 11
---
4
is
– 107
---
2
, then the common difference must be

tickcross


Worked Solution:

The formula for the sum, S of n terms of the arithmetic series starting at a whose terms have a common difference of d is:
S =
n (2 a + (n – 1) d )
---
2
For this arithmetic series, we have
a =
– 11
---
4
, n = 8 and S =
– 107
---
2
Rearranging to find d:
d =
2 ( S – a n )
---
n ( n – 1 )
Using the values for this question we have:
d =
2 (
– 107
–--
2
(
– 11
---
4
)8 )
---
8×7
<=>d =
– 9
---
8


© MEI Produced by Dr Ron Knott, revised 15 May 2007
tom . button [AT] mei . org . uk
Test reference: SeriesAPFormula.html?ref=86146,qu=d